Course specifications

Programme(s) on which the course is given B.Sc. of Pure

Mathematics and

Computer Scienc

e, Physics and Computer

science

Major or minor element of programs Major

Department offering the program

Department offering the course

Academic year / Level

Date of specification revision

Date of specification approval

Mathematics

Mathematics

Third level (3)

September 2012

September 2012

A- Basic Information

Title: Database Code: M3310

systems

Credit Hours: 4 Total: 4 hr.

Lecture: 3 Tutorial: - Practical: 2 Other: -

B- Professional Information

- 1 Overall aims of course
 - 1. Understand issues related to the design and implementation of relational database systems.
 - 2. Be able to develop a semantic data model based on high-level requirements.
 - 3. Be able to develop a relational database model given a semantic data model and high level requirements.
 - 4. Be able to implement a relational database using a current relational database management system and related tools.
 - 5. Be able to analyze a relational design on the basis of functional dependencies and other relational integrity constraints.

- 6. Understand design trade-offs related to structure and performance of relational database systems.
- 7. Understand fundamental file organization and physical implementation issues for relational database systems.
- 8. Understand issues related to application development for relational database systems.
- 2 Intended learning outcomes of course (ILOs)
- a- Knowledge and understanding:

The student should be able to;

- a1- Demonstrate basic different database structures available.
- a2- Know and understand basic techniques in relational database.
- a3- Recognize how to design and implement relational databases.
- a4- Explain the meaning of statement in SQL,Oracle programming.

b- Intellectual skills

The student should be able to;

- b1- Develop skills for database design and implementation.
- **b2- Develop appropriate semantic data models.**
- b3- Develop and evaluate trade-offs related to structure and performance of relational database systems.
- b4- Apply appropriate database security, efficiency, and accuracy issues.

c- Professional and practical skills

The student should be able to;

- c1- Specify and express SQL queries using SQL Server based on the tools learned in the course.
- c2- Use semantic data models.
- c3- Specify and design practice relational database design.

c4-Choose and apply test functional dependencies.

d- General and transferable skills

The student should be able to;

- d1- Employ SQL queries for solving database problems using the materials taught in the course.
- d2- Work in a team effectively to express models for database design.
- d3-Think independently to manage relational database administration tools.
- d4-Use information to compare physical and logical file organization.

3- Contents

Topic	No. of	Lecture	Tutorial/
	hours		Practical
Overview of database systems	4	1	1
(2 hours)	-	_	_
Database design and entity	8	2	2
relationship modeling			
Overview of the relational	8	2	2
model			
Relational algebra	4	1	1
SQL	4	1	1
Functional dependencies	4	1	1
Normal forms	4	1	1
Database application	4	1	1
development			
Internet applications	4	1	1
Indexing and storage	4	1	1
Query evaluation and	4	1	1
optimization			
Security	4	1	1

4– Teaching and learning methods

4.1- Lectures

4.3- Attending practical class	ses
5- Student assessment methods	
5.1 Mid term written exam	to assess
understanding competencies	
5.2 Mid term practical Exam	to assess
programming skills	
5.3 Oral Exam	to assess
attendance and interesting.	
5.4 Semester hand in assignment	ents to assess
understanding professionalism.	
5.5 Final lap exam	to assess a whole
lap skills	
5.6 Final term written Exam	to assess
comprehension.	
Assessment schedule	
Assessment 1 Mid term + practical	al Week 7
Assessment 2 semester activities	Week 5 and 8
Assessment 3 Final term oral exam	ı + lap Week 13
Assessment 4 final term written ex	am Week 14
Weighting of assessments	
Mid-Term Examination	
20%	
Semester Work (homework assign	ments + oral tests)
20 %	
Other types of assessment	
00%	
Final-term written Examination	
60%	
Total	
100	0%

4.2- Working on hand in assignments

Any formative only assessments

6- List of references

6.1- Course notes

Collected and prepared notes that cover the main topics in the course content

6.2- Essential books (text books)
Elementary text books under the title: Database
Management Systems,

- **6.3- Recommended books:**
- 6.4- Periodicals, Web sites, ... etc Non.
- 7- Facilities required for teaching and learning Lecture: PC's - packages for ready made scientific programs. - Data Show.

Lap: Advanced lap contains SQL server 2000 (or 2005) package.

Names of professors/lecturers contributing to the design and delivery of the course

Dr. Passent El-Kafrawy

Dr. Hany Ibrahim

Course coordinator: Dr. Hani M Ibrahem

Head of Department: Prof. Mohamed A. Ramadan

Date: / /